{ "cells": [ { "cell_type": "code", "id": "initial_id", "metadata": { "ExecuteTime": { "end_time": "2025-09-12T15:52:56.909385Z", "start_time": "2025-09-12T15:52:56.417088Z" } }, "source": [ "import os\n", "\n", "os.environ['DASHSCOPE_API_KEY'] = 'sk-e2a05bbcfac84e53b73f98acef15a009'\n", "\n", "# Step 0: Define tools and model\n", "\n", "from langchain_core.tools import tool\n", "from langchain_community.chat_models.tongyi import ChatTongyi\n", "\n", "llm = ChatTongyi(\n", " model=\"qwen-max\", # 此处以qwen-max为例,您可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models\n", " streaming=True,\n", " # other params...\n", ")" ], "outputs": [], "execution_count": 1 }, { "metadata": { "ExecuteTime": { "end_time": "2025-09-12T15:54:08.425580Z", "start_time": "2025-09-12T15:54:08.374623Z" } }, "cell_type": "code", "source": [ "\n", "\n", "# Define tools\n", "@tool\n", "def multiply(a: int, b: int) -> int:\n", " \"\"\"Multiply a and b.\n", "\n", " Args:\n", " a: first int\n", " b: second int\n", " \"\"\"\n", " return a * b\n", "\n", "\n", "@tool\n", "def add(a: int, b: int) -> int:\n", " \"\"\"Adds a and b.\n", "\n", " Args:\n", " a: first int\n", " b: second int\n", " \"\"\"\n", " return a + b\n", "\n", "\n", "@tool\n", "def divide(a: int, b: int) -> float:\n", " \"\"\"Divide a and b.\n", "\n", " Args:\n", " a: first int\n", " b: second int\n", " \"\"\"\n", " return a / b\n", "\n", "\n", "# Augment the LLM with tools\n", "tools = [add, multiply, divide]\n", "tools_by_name = {tool.name: tool for tool in tools}\n", "llm_with_tools = llm.bind_tools(tools)\n", "\n", "from langgraph.graph import add_messages\n", "from langchain_core.messages import (\n", " SystemMessage,\n", " HumanMessage,\n", " BaseMessage,\n", " ToolCall,\n", ")\n", "from langgraph.func import entrypoint, task\n", "\n", "# Step 1: define model node\n", "@task\n", "def call_llm(messages: list[BaseMessage]):\n", " \"\"\"LLM decides whether to call a tool or not\"\"\"\n", " return llm_with_tools.invoke(\n", " [\n", " SystemMessage(\n", " content=\"You are a helpful assistant tasked with performing arithmetic on a set of inputs.\"\n", " )\n", " ]\n", " + messages\n", " )\n", "\n", "\n", "# Step 2: define tool node\n", "@task\n", "def call_tool(tool_call: ToolCall):\n", " \"\"\"Performs the tool call\"\"\"\n", " tool = tools_by_name[tool_call[\"name\"]]\n", " return tool.invoke(tool_call)\n", "\n", "\n", "# Step 3: define agent\n", "@entrypoint()\n", "def agent(messages: list[BaseMessage]):\n", " llm_response = call_llm(messages).result()\n", "\n", " while True:\n", " if not llm_response.tool_calls:\n", " break\n", "\n", " # Execute tools\n", " tool_result_futures = [\n", " call_tool(tool_call) for tool_call in llm_response.tool_calls\n", " ]\n", " tool_results = [fut.result() for fut in tool_result_futures]\n", " messages = add_messages(messages, [llm_response, *tool_results])\n", " llm_response = call_llm(messages).result()\n", "\n", " messages = add_messages(messages, llm_response)\n", " return messages" ], "id": "8a77a9b24ee9616d", "outputs": [], "execution_count": 2 }, { "metadata": { "ExecuteTime": { "end_time": "2025-09-12T15:54:11.693756Z", "start_time": "2025-09-12T15:54:10.101700Z" } }, "cell_type": "code", "source": [ "\n", "# Invoke\n", "messages = [HumanMessage(content=\"Add 3 and 4.\")]\n", "for chunk in agent.stream(messages, stream_mode=\"updates\"):\n", " print(chunk)\n", " print(\"\\n\")" ], "id": "7c4b06da8200b106", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'call_llm': AIMessage(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_ef8c897dd4f84afbbf0927', 'type': 'function', 'function': {'name': 'add', 'arguments': '{\"a\": 3, \"b\": 4}'}}]}, response_metadata={'model_name': 'qwen-max', 'finish_reason': 'tool_calls', 'request_id': '6d8c6555-1a67-4cc9-a93f-57e94bc20842', 'token_usage': {'input_tokens': 354, 'output_tokens': 22, 'total_tokens': 376, 'prompt_tokens_details': {'cached_tokens': 0}}}, id='lc_run--afcea3de-940e-45c6-ba96-bbd7e41fa115-0', tool_calls=[{'name': 'add', 'args': {'a': 3, 'b': 4}, 'id': 'call_ef8c897dd4f84afbbf0927', 'type': 'tool_call'}], chunk_position=None)}\n", "\n", "\n", "{'call_tool': ToolMessage(content='7', name='add', id='aeaf3d29-254b-48ab-a933-814e9ea72394', tool_call_id='call_ef8c897dd4f84afbbf0927')}\n", "\n", "\n", "{'call_llm': AIMessage(content='The sum of 3 and 4 is 7.', additional_kwargs={}, response_metadata={'model_name': 'qwen-max', 'finish_reason': 'stop', 'request_id': '310102ab-48dc-4e80-bc57-ca8814239a65', 'token_usage': {'input_tokens': 386, 'output_tokens': 13, 'total_tokens': 399, 'prompt_tokens_details': {'cached_tokens': 0}}}, id='lc_run--b3dffae8-42c2-492e-a1f4-e659eba6a879-0', chunk_position=None)}\n", "\n", "\n", "{'agent': [HumanMessage(content='Add 3 and 4.', additional_kwargs={}, response_metadata={}, id='40fc3758-a8ab-4302-aff9-8dfbdec16fa0'), AIMessage(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_ef8c897dd4f84afbbf0927', 'type': 'function', 'function': {'name': 'add', 'arguments': '{\"a\": 3, \"b\": 4}'}}]}, response_metadata={'model_name': 'qwen-max', 'finish_reason': 'tool_calls', 'request_id': '6d8c6555-1a67-4cc9-a93f-57e94bc20842', 'token_usage': {'input_tokens': 354, 'output_tokens': 22, 'total_tokens': 376, 'prompt_tokens_details': {'cached_tokens': 0}}}, id='lc_run--afcea3de-940e-45c6-ba96-bbd7e41fa115-0', tool_calls=[{'name': 'add', 'args': {'a': 3, 'b': 4}, 'id': 'call_ef8c897dd4f84afbbf0927', 'type': 'tool_call'}], chunk_position=None), ToolMessage(content='7', name='add', id='aeaf3d29-254b-48ab-a933-814e9ea72394', tool_call_id='call_ef8c897dd4f84afbbf0927'), AIMessage(content='The sum of 3 and 4 is 7.', additional_kwargs={}, response_metadata={'model_name': 'qwen-max', 'finish_reason': 'stop', 'request_id': '310102ab-48dc-4e80-bc57-ca8814239a65', 'token_usage': {'input_tokens': 386, 'output_tokens': 13, 'total_tokens': 399, 'prompt_tokens_details': {'cached_tokens': 0}}}, id='lc_run--b3dffae8-42c2-492e-a1f4-e659eba6a879-0', chunk_position=None)]}\n", "\n", "\n" ] } ], "execution_count": 3 }, { "metadata": {}, "cell_type": "code", "outputs": [], "execution_count": null, "source": "", "id": "7e55492ae0289f06" } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }